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References [ 1.2 1 examined the indentation formed by the axial force of 
a rigid stamp acting on an elastic layer lying on a rigid base, under 
the assumption of the absence of friction between the stamp and the 
layer, and likewise between the layer and the base. In [ 3 1 the contact 
problem for an elastic layer was solved in the general case when the line 
of action of the force does not coincide with the axis of the stamp.’ 

We give below the solution to the general mixed problem for an elastic 
layer in the case when on one of the bounding planes there exists a 
circular line of separation in the boundary conditions (Section 1). The 
results that are obtained are applied to contact problems for an elastic 
layer in two cases: a) friction between the layer and the base is absent 

(Section 2), and b) the layer is rigidly attached to the base (Section 
3); in both cases friction between the stamp and the layer is neglected. 

The relations between the displacements of the stamp and the applied 
forces are found. and corresponding numerical data for various values of 
the ratio of the stamp radius to the layer thickness are presented. 

1. ‘Ihe mixed problem for an elastic layer in the presence 
of a circular line of separation in the boundary conditions 
on oue of the faces. We examine the elastic equilibriun of an un- 
bounded 1 ayer 0 < r < m , 0 < #a 2n, 0 < z < h Cr, +, z are cylindrical 
coordinates) under the following conditions: the normal diqlacements ZD 

l After this paper was submitted for publication, [ 7 1 was published, 
in which the problem of the action of a stamp on a layer (without 
friction) was solved by a different method which yields a solution 
in the form of a power series in l/h, where h is the thickness of the 
layer. 
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are given on the face z = h; in the interior of some circle of radius 

r = a on the face z = 0 the displacanents w are also given, while in the 

exterior the normal stresses ut are given; finally, on both bounding sur- 
faces of the layer the shear stresses r 

x2 ana7YZ are prescribed. Hence 

the problem consists of obtaining the solution of the equations of 

elasticity under the following boundary conditions: 

w = wh (r, q>, %z = %h(T, q), %z=ruh (r,(p) for z=h (1.1) 

w=wo (r,cp) for z = 0, r < a, a,= 60 (r, cp> for z=O, r>a (1.2) 

Kxz = TLxll (T, cp), -$z = Qo b.9 0) for,=0 (4 -3) 

In the solution we use the Papkovich-Neuber formulas, vkCch give the 

solution of the Lame equations in the form of four harmonic functions 

aO, aI, 9, QS3' namely 

2pu= - g + 4 (1 - Y) G, 2p.2?= -g + 4 (1 - Y) 02, 

2pu,=-$-+/,(I -v)@s (1.4) 

Here p is the shear modulus, and F = Q,, + n$ +y$ + z$. 

We likewise introduce the formulas for the stresses entering into the 

boundary conditions: 

where v is Poisson's ratio. 

Making use of the presence of an VUextra" function in the Papkovich- 

Neuber solution, we supplement relationships to 

Cl?=0 for z=O, CD=0 for z = h (I.61 

the conditions (1.1) to (l.3). 

'Ihen from the boundary conditions associated with the shear stresses 

we obtain two separate Neunann problems for the functions @I and $,, as a 

consequence of which we consider these functions to be known in the 

sequel. 
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'Ihe remaining boundary conditions of the problem can be satisfied if 

the harmonic functions QS andah are subjected to the conditions (in 

this it is assmed that all of the unknown functions are of the order 

r-' at infinity) 

We represent the harmonic functions a3 andah in the form 

(1.10) 

(1.11) 

By means of the Fourier and Hankel transforms*, one finds from condition 

(1.7) 

in 

Here and in the sequel, quantities with the index (n) are coefficients 

the expansion of the corresponding functions in Fourier series in 

terms of the angular coordinate 4. 

?he condition (1.8) allows us to express the quantity B,(X) in terms 

of the ranaining unknown functions, after which we obtain the following 

pair of integral equations from (l.9) and (1.10) for the basic unknowns 

* It is assumed that all of the functions can be represented by the 
corresponding series and integrals. 
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A#*. 

I ’ A, (h) J, (hr) dh = X, (r) (r < a), 
0 --Ah 

as AA,(I) 
g (‘) = 

ah +hhhhe 
ah +sinh&mh~h 

(1.13) 

s 
-I Jn (W a. = up, o*) (F > a), 

0 

Here 

2(1 -Y)L(T) = 2p zf@) -j- 
@Q, f YTuoP 

2(1--Y) - 
(1.14) 

-rf2(1 -V)C,coth hhf &j J,(hr)dh 

co 

E, = h 
2 (1 -v) s 

(nxo + yq,o)@) Jn (W rdr 
0 

We note that, by expressing \Y,(r) as a Hankel integral (it is to be 

taken as identically zero for F < a), the system (1.13) can be bmught 

to the fonn 

Here on(r) is a kmwn function, Hhile Qn(X> is a new unknown quantity 

which is related to AR(h) by the sinple expression 

In the solution of Equations (l.151, we shall start from a system of 

a pair of integral equations of simpler form 

* Particular cases of such equations are examined in [ 4 I. 
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'Ihe exact solution of these equations is given by the formula [ 5 1: 

where 

t’lpa (t) Jn.+ (ht) at (1.18) 
0 

We introduce the notation 

(D,(h) 
i--_gm = fn (A) 

Then the system (1.15) can be brought into the fon (Ll?), whereby the 
right side will contain the unknown function @"(A): 

The substitution of (L20) into (l.19) gives 

+ t 1 xn (t” - x2)--‘/2dz 7 Q (I) f,, (h)Jn-l (Lx) dh (1.21) 

I) 0 

With (1.18) t&en into account this relation is an integral equation 
for the function #n(t). After the change of variables z = t sin 8 and 
the use of the Sonine integral 16 I 

Jn_.+ (z) = I/F p Jn_+ (z sin 0) sinWIde (1.22) 
0 

Equation (1.211 can be bmught into the fonn 

(1.23) 
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‘Ihe kernel and the nonhomogeneous term of this equation have the forms 

(cc, t) = n I/ii 7 g (h) J,,-_I,, (hz) Jn_-l,, (ht) hdh 

0 

t”F,, (t) = Iii [x’ko, (z)] + ntn”r o, (t sin 0) sin+1OdO + 

0 
‘I2 x 

+ tn+1 

s 

0,’ (t sin 0) sin” ede 
0 

(1.24) 

Hence, the problem which has been posed reduces to a Fredholm integral 

Equation ( L 23) with a synmetric kernel, the solution of which yields the 

function f,(A) to be determined by means of Formula (1.18). 

2. Contact problem for the elastic layer in the absence of friction. 

We apply the results obtained to the solution of the following problem: 

a plane circular stamp, which is rigid in its plane, is impressed on an 

elastic layer lying on a rigid base, but with a line of action of the 

force that does not coincide with the axis of the stamp (figure). If 

friction is neglected, both between the stamp and the layer and between 

the layer and the base, then the shear stresses on the boundaries of the 

layer are zero. In addition, normal displacements on the plane z = h and 

normal stresses in the region z = 0, r > a are absent. 

Hence, this problem is a particular case of the problem examined in 

Section 1 for 

‘xh = %h 
=wh=z 

TO = 
z 

210 
= CT0 = 0, wg = 6 + yx (2.1) 

where 6 is the translational displacement of the stamp along the Oz-axis 

and y is the angle of rotation about the Oy-axis. 

It is not difficult to show that in the problem under consideration 

@l = G?g = 0. and in the expressions (1.1) it is necessary to set Cn = 

Da’ 0, B”= (l- 2v - x h coth Xh)A, for the functions @s and a4. 

Further, from the form of the function w,, it follows that it is necessary 

to retain only the terms with n = 0 and a = 1 in the Fourier series ex- 

pansions. In connection with this, the qroblem may be formally broken UP 

into two problems: an axially-symmetric problem in which all of the un- 

known functions are proportional to the quantity 6. and a problem asscci- 

ated with the rotation of the stamp wherein all of the quantities con- 

tain the factor y cos q5. Since the first problem has already been in- 

vestigated in [ 1 I, we turn to the second problem, in which the pair of 

equations (1.13) for Al E A have the form 



Certain contact problem for (III elastic layer 1021 

03 

s PT 
A (h)A(Ar)dh=l_yr (r < a), 

co hA (h) c 1 _ g (Al Jl (W dJ, = 0 (r > a) (2.2) . 
0 0 

In accordance with ( 1.23) - (1.24). this system may be reduced to a 
Fredholm integral equation. Assuming in (1.18). (1.23), and (1.24) that 

n = 1, 01(z)= &x 

we obtain for the unknown quantity A(h) 

A (h) = [I - g (h)l 1~ (t) sin htdt 

u 

(2.3) 

where the function $I(%) must be found from the 

equation 

a I 

4PTX + _i_ 
v(x)= n(l--v) “r [G P-4 s - G 0 + 41 cp 0) dt 

0 
where (2.4) 

C(u)=rg(i)cosiiudi (2.5) 
0 

We note that a number of quantities, and in particular 
along the base of the stamp, can be directly expressed in 

function +(t), namely: 

the stresses 
terms of the 

cp’ (t) dt “P (4 
3 z z=o = r c s- cp (4 

r (t + vt 
--- 

2-r2) l/P--r2 
-- 

r 
r<a 

(a + Jf@.__ r2) 1/& - r2 cosTJ 1 (2*6) 

Hence, by comparing the moment of these forces with the quantity Pz,-, 
we obtain a relationship between the moment PxO and the angle of rota- 
tion 

Pxo = 2n tcp (t) dt 
s 
0 

(2.7) 

For the numerical calculations the basic integral equation is brought 
to a dimensionless form 

1 

o (E) = 5 + f \ o (9 IK 0’ - E) - K (z + 91 dz, (0 d E d 1) (2.8) 
0 
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by means of the substitutions 

and Ia.S. Ufliand 

where 
03 

K (4 = P 
a+ e+khhu 
a+aimhClcoshcz 

0 

(2.10) 

In [ 1 1 the function K(u) was tabulated for a wide range of the values 
of the basic parameter - ratio of the radius of the stamp to the layer 

thickness (see Table 1, which supplements the values in [ 1 I ), after 

which Equation (2.8) was solved by means of a reduction to a system of 

algebraic equations. The results of the corresponding calculation when 

TABLE 1. Values of the kernel I(U) 

- 

- 
p=2.5 $3 = 3.0 u P = 2.5 p = 3.0 

- 

2.9186 3.5022 
2.7988 3.2973 
2 4741 2.7670 
2.0326 2.1032 
15707 I,4813 
1.1578 0.9922 
0.8289 0.6504 
0.5816 0.4296 
0.4098 0.2944 
0.2946 0.2130 
0.2186 0.1632 

0.1690 0.1320 
0.1360 0.1106 
0.1137 0.0948 
0.0975 0.0825 
0.0850 0.0726 
0.0752 0.0642 
0.0672 0.0570 
0.0605 0.0511 
0.0545 0.0459 
0.0495 0.0414 

the interval (0.1) is divided into 10 parts is given in Table 2 (a,,, s a).* 

In Table 3 are given the values of the coefficient 

which characterizes the ratio of the moment of the external force to the 

angle of rotation of the stamp and which is calculated according to the 

formula resulting from (2.7): 
1 

+=\?w (T)dr (2.11) 

0 

* We correct here essential misprints in [3 1. 
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TABLE 2. Value of the coefficient 

_ / pzo.5 1 p=,.O 1 p=i.5 / P=m j p=2.5 / p=3.0 

0.1038 0.1249 0.1638 0.2118 
0.2076 0.2490 0.3249 0.4185 
0.3113 0.3716 0.4805 0.6148 
0.4149 0.4920 0.6283 0.7961 
0.5183 0.6096 0.7688 0.9581 
0.6215 0.7241 0.8933 I. 0974 
0.7245 0.8351 I. 0085 1.2124 
0.8272 0.9426 1.1120 I. 3034 
0.9297 I. 0466 I. 2050 I. 3728 
1.0318 1.1479 I. 2888 I. 4257 

0.2628 0.3130 
0.5175 0.6173 
0.7580 0.9073 
0.9765 I. 1615 
I. 1656 I. 3833 
I. 3192 1.5515 
I. 4326 1.6641 
I. 5054 1.7158 
I. 5422 1.7128 
I. 5529 1.6715 

1.6623 2.7122 3.9095 5.1290 6.3498 7.5726 
1.6610 2.7045 3.8933 5.1050 6.3200 7.5368 
1.6573 2.6814 3.8447 5.035 6.2304 7.4281 
1.6512 2.6435 3.7641 4.917 6.0783 7.2436 
1.6428 2.5916 3.6521 4.748 5.8598 6.9772 
I. 6321 2.5267 3.5101 4.530 5.5699 6.6205 
1.6194 2.4505 3.3404 4.261 5.2045 6.1630 
1.6047 2.3648 3.1473 3.946 4.7638 5,5974 
I. 5882 2.2715 2.9362 3.594 4.2570 4.9286 
I. 5702 2.1729 2.7145 3.220 3.7087 4,1876 
I. 5508 2.0714 2.4902 2.845 3.1571 3.4387 

0.1060 0.1371 0.1897 
0.2118 0.2728 0.3753 
0.3175 0.4058 0.5527 
0.4230 0.5350 0.7184 
0.5281 0.6595 0.8691 
0.6328 0.7786 1.0026 
0.7372 0.8919 1.1182 
0.8410 0.9994 1.2158 
0.9438 1.0996 I. 2978 
1.0468 i. 1983 I. 3668 

0.2500 0.3114 0.3726 
0.4931 0.6135 0.7342 
0.7200 0.8979 I. 0735 
0.9311 I. 1538 1.3784 
1.1131 1.3711 1.6340 
I. 2623 I. 5399 1.8255 
1.3761 I. 6520 1.9384 
1 4539 I. 7049 i. 9641 
1.5007 i .7049 1.9095 
1.5240 I. 6687 1.8019 

We note at this point that the complete solution of the contact 

problem that has been posed is obtained from the sum of the solution de- 

rived above and the results of the corresponding axially-symmetric prob- 

lem (see [ 1 I ); however, this solution is in fact realized only when the 

pressure on the base of the stamp is non-negative. If the formula for the 

sum of the pressures caused by the rotation of the stamp as well as by 

its translational displacements is written down, then it turns out that 

the pressure becomes zero along a certain curve which is symmetric with 

respect to the coordinate 4. With the requirement that in the limiting 
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TABLE 3. Values of the kernel Z.(a) 

P 

- 
0 

1 
1 

113 
113 
113 
i/3 

0.5 

1.51 
1.62 
0.347 
0,352 
0.325 

0,322 

case this curve should be t1 angent to the contact region at the point 

- 

1.0 I I 1.3 2.0 

I 

2.20 2.95 
2.48 

3.72 
3.40 4.34 

0.397 0.472 0.559 
0.422 0.519 0,626 
0.301 0,275 

0.294 0,270 

- 

/ 2.3 3.0 

4.49 5.26 
5.28 6.20 
0.650 0.743 
0.738 0.852 
0.270 0.266 

0.265 0.262 

r= a, $= w, we arrive at the following value for the lever arm (x,*) 
of the applied force P: 

(2.12) 

with higher values indicating that the condition of non-negative pressure 
is violated. 

In this formula +(r) denotes the basic function O(T 1 for the axially- 
symmetric case, and the coefficient K is given by the formula [ 1 1 

1 
I-VP * 

X=4CLa~= I 06 (z) d+c 
0 

(2.13) 

Table 3 gives values of the quantity K and the limiting 1eVer arm x0*. 

In concluding this section ae note that the case p = 0 corresponds to 
the well-known contact problem for the half-space. For this case if = 0. 

0 (E) 55 g, q = $43, zfJ* = a/3. 

3. Contact problem for a layer attached to the base. The methods 
developed in Section I of this paper also allow one to investigate other 
mixed problems for an elastic layer when the displacements u and v are 
given on the surface z = h instead of the shear stresses rXt and t Z. The 

reduction to a pair of integral equations of the type (1.15) can a so be I 

accomplished in this case if one takes aa the second additional condition 
f 1.6) the relationship 

(~o+~l+~+z~)=~~~o (3.5.1) 

The form of the system (1.15) is completely retained in this case; 
however the function g(x) turns out to depend on Poisson’s ratio: 
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g (a) = 
U (U + 1) + 4 (1 - Y)’ - (3 - 4Y)sinhU * CPU 

CL~ + 4 (1- Y)’ + (3 - 4Ybi& u ’ a = hh (3.2) 

Thus. in the case of the contact problem for the layer attached to the 
base (friction between the stamp and the layer is neglected as before), 

calculations can be carried out according to the same scheme as in 

Section 2. 

TABLE 4. Values of the kernel I,(u) 

p = 0.5 

___.- 

0.6882 
0.6867 
0.6820 
0.6744 
0.6638 
0.6506 

:. %; 
0’ 5966 
0’ 5748 
0’5516 
0’5272 
0’ 5020 
0’4764 
0’ 4504 
0’4244 
0’ 3988 
0’ 3735 
0’3489 
0’ 3252 
013022 

T 

- 
1.0 

i. 3765 
1.3641 
1.3277 
1.2695 
1.1932 
1.1031 
1.0041 
0.9008 
0.7975 
0.6978 
0.6045 
0.5192 
0.4429 
0.3759 
0.3179 
0.2684 
0.2266 
0.1918 
0.1630 
0.1393 
0.1200 

1.5 

2.0648 
2.0232 
I. 9042 
I. 7244 
1.5062 

:*zf; 
0: 8422 

~%; 
0: 4026 

:%:! 
0: 1938 
0.1566 
0.1295 
0.1094 
0.09414 
0.08228 
0.07292 
0.06549 

In Table 4 values of the basic kernel 

a3 

8 tre given 

3.4412 
3.2528 
2.7578 
2.1222 
1.5212 
1.0205 
0.6710 
0.4418 
0.3000 
0.2158 
0.1647 
0.1315 
0.1092 
0.09352 
0.0814 
0.07090 
0.06220 
0.0555 
0.04982 
0.04450 
0.03982 

L (4 = P s u (a + 1) + 4 (1 - Y)~ - (3 - 4v)sinhue-a 
a2 + 4 (1 - Y)2 + (3 - 4Y)k& u cos upuda (3.3) 

0 

-7- 

- 
2.0 

2.7530 
2.6554 
2.3864 
2.0082 
1.5950 
1.2090 
0.8858 
0.6358 
0.4532 
0.3260 
0.2400 
0.1836 
0.1459 
0.1198 
0.1011 
0.08732 
0.07704 
0.0688 
0.06164 
0.005518 
0.04976 

2.5 3.0 

4.1295 
3.8085 
3.0123 
2.0934 
I. 3287 
0.8052 
0.4890 
0.3132 
0.2188 
0.1646 
0.1310 
0.1091 
0.09246 
0.07848 

~~%z 
0’05214 
0’ 04581 
0’04137 
0’ 03720 
0: 03315 

for various values of p = o/h. v = 0.3 is assumed. 

For the same values of the parameters, the quantities q” (r ), a,,,‘(7 1, 

KO, @I Xo*O, are given in Tables 2 and 3; here the index indicates that 
the data refer to the case when the layer and the base are attached to 

one another. 

The numerical results that have been obtained in this paper allow one. 

in particular. to assess the influence of the thickness of the layer on 
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the indentation of the stamp in two limiting cases - when friction be- 

tween the layer and the base is absent and when the layer and the base 
are attached together. 
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